J Adv Periodontol Implant Dent
August 2024
Background: Acellular dermal matrix (ADM) has been introduced as an alternative to autogenous grafts. This study assessed the biological behavior of mesenchymal stem cells (MSCs) on two types of commercial ADM scaffolds.
Methods: The present in vitro study investigated the behavior of MSCs cultured on scaffold type I CenoDerm® (Tissue Regeneration Corporation) and type II Acellular Dermis (Iranian Tissue Product Co.
In this study, we employed a combination of electrospinning and electrospray techniques to fabricate wound dressings with a particle-fiber structure, providing dual characteristics of oxygen-releasing and intrinsic antioxidant properties, simultaneously. The electrospun part of the dressing was prepared from a blend of polycaprolactone/gallic acid--gelatin (GA--GE), enabling intrinsic ROS scavenging. To the best of our knowledge, this is the first time that PCL/GA--GE was fabricated by electrospinning.
View Article and Find Full Text PDFThe cartilage tissue lacks blood vessels, which is composed of chondrocytes and ECM. Due to this vessel-less structure, it is difficult to repair cartilage tissue damages. One of the new methods to repair cartilage damage is to use tissue engineering.
View Article and Find Full Text PDFObjective: Mesenchymal stem cells (MSCs) are widely recognized as a promising cell type for therapeutic applications due to their ability to secrete and regenerate bioactive molecules. For effective bone healing, it is crucial to select a scaffold that can support, induce, and restore biological function. Evaluating the scaffold should involve assessing MSC survival, proliferation, and differentiation.
View Article and Find Full Text PDFVaccine potency is typically evaluated using an assay that acts as a surrogate for biological activity. Although in vivo vaccines better represent human immunological responses, in vitro assays are preferred due to lower variability, higher throughput, easier validation and ethical considerations. In in vitro determination of Human Papillomavirus (HPV), Virus-like particle (VLP) vaccine potency currently depends on monoclonal antibody assays.
View Article and Find Full Text PDF