Publications by authors named "E Sensi"

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder characterized by the predisposition to develop tumors such as malignant peripheral nerve sheath tumors (MPNSTs) which represents the primary cause of death for NF1-affected patients. Regardless of the high incidence and mortality, the molecular mechanisms underneath MPNST growth and metastatic progression remain poorly understood. In this proof-of-concept study, we performed somatic whole-exome sequencing (WES) to profile the genomic alterations in four samples from a patient with NF1-associated MPNST, consisting of a benign plexiform neurofibroma, a primary MPNST, and metastases from lung and skin tissues.

View Article and Find Full Text PDF
Article Synopsis
  • * These genes are critical for maintaining genetic integrity through homologous recombination (HR) DNA repair, which fixes DNA double-strand breaks effectively.
  • * The review discusses the role of HR and its impact on the efficacy of poly (ADP-ribose) polymerase (PARP) inhibitors as a treatment, while also exploring the genetic factors and risk assessment approaches that could enhance strategies for prevention and treatment of these cancers.
View Article and Find Full Text PDF

The finding of variants of uncertain significance (VUS) in the activity of a diagnostic genetic laboratory is a common issue, which is however provisional and needs to be periodically re-evaluated, due to the continuous advancements in our knowledge of the genetic diseases. Neurofibromatosis type 1, caused by the occurrence of heterozygous pathogenic NF1 variants, is a good model for studying the evolution of VUS, due to the widespread use of genetic testing for the disease, the constant enrichment of the international databases with NF1 variants and the full adult penetrance of the disease, which makes genotyping the parents a crucial step in the diagnostic workflow. The present study retrospectively reviewed and reinterpreted the genetic test results of NF1 in a diagnostic genetic laboratory in the period from January 1, 2000 to December 31, 2020.

View Article and Find Full Text PDF

Novel approaches to uncover the molecular etiology of neurodevelopmental disorders (NDD) are highly needed. Even using a powerful tool such as whole exome sequencing (WES), the diagnostic process may still prove long and arduous due to the high clinical and genetic heterogeneity of these conditions. The main strategies to improve the diagnostic rate are based on family segregation, re-evaluation of the clinical features by reverse-phenotyping, re-analysis of unsolved NGS-based cases and epigenetic functional studies.

View Article and Find Full Text PDF