Publications by authors named "E Selvarajan"

In recent years, the process of producing bioethanol from lignocellulosic biomass through biorefining has become increasingly important. However, to obtain a high yield of ethanol, the complex structures in the feedstock must be broken down into simple sugars. A cost-effective and innovative method for achieving this is ionic liquid pre-treatment, which is widely used to efficiently hydrolyze the lignocellulosic material.

View Article and Find Full Text PDF

The conversion of lignocellulosic waste to energy offers a cost-effective biofuel. The current study discusses the utilization of cellulose in rice husks by lichen-associated Streptomyces sp. MS2A via carbohydrate metabolism.

View Article and Find Full Text PDF

Every year, 180 billion tonnes of cellulose are produced by plants as waste biomass after the cultivation of the desired product. One of the smart and effective ways to utilize this biomass rather than burn it is to utilize the biomass to adequately meet the energy needs with the help of microbial cellulase that can catalytically convert the cellulose into simple sugar units. Marine actinobacteria is one of the plentiful gram-positive bacteria known for its industrial application as it can produce multienzyme cellulase with high thermal tolerance, pH stability and high resistant towards metal ions and salt concentration, along with other antimicrobial properties.

View Article and Find Full Text PDF

The biological synthesis of nanoparticles is emerging as a potential method for nanoparticle synthesis due to its non-toxicity and simplicity. In the present study, a bacterium resistant to heavy metals was isolated from a metal-contaminated site and we aimed to report the synthesis of FeO nanoparticles via co-precipitation using bacterial exopolysaccharides (EPS) derived from _RMSN6 strains. A three-variable Box-Behnken design was used for determining the optimal conditions of the FeO NPs synthesis process.

View Article and Find Full Text PDF

Cobalt oxide (CoO) is a low-cost material exhibiting excellent physicochemical and photocatalytic properties indicating its potential use for next-generation eco-friendly energy storage and photocatalytic degradation applications. In this study, CoO nanoarcs were synthesized using SBA-15 as a template by microwave-assisted method to form an S15/m-CoO product. Characterization was done by low and wide-angle X-Ray diffraction, and Fourier transformed infra-red spectroscopic studies confirming the presence of S15/m-CoO.

View Article and Find Full Text PDF