Publications by authors named "E Secret"

The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons.

View Article and Find Full Text PDF

A challenge in current stem cell therapies for Parkinson's disease (PD) is controlling neuronal outgrowth from the substantia nigra towards the targeted area where connectivity is required in the striatum. Here we present progress towards controlling directional neurite extensions through the application of iron-oxide magnetic nanoparticles (MNPs) labelled neuronal cells combined with a magnetic array generating large spatially variant field gradients (greater than 20 T m). We investigated the viability of this approach in both two-dimensional and organotypic brain slice models and validated the observed changes in neurite directionality using mathematical models.

View Article and Find Full Text PDF

The endosomal entrapment of functional nanoparticles is a severe limitation to their use for biomedical applications. In the case of magnetic nanoparticles (MNPs), this entrapment leads to poor heating efficiency for magnetic hyperthermia and suppresses the possibility to manipulate them in the cytosol. Current strategies to limit their entrapment include functionalization with cell-penetrating peptides to promote translocation directly across the cell membrane or facilitate endosomal escape.

View Article and Find Full Text PDF

It is reported in this study a new approach for modulation and even suppression of the electroosmotic flow (EOF) to achieve better electrokinetic preconcentration in capillary electrophoresis. This is based on the augmentation of the buffer's concentrations to very high levels (more than a thousand of mM) without recourse to any dynamic/permanent coating nor viscous gel. The use of large weakly charged molecules as background electrolyte's constituents allows working at extreme concentration ranges without penalty of high electric currents and Joule heating.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals that activating the RAS signaling pathway can boost neuron growth, specifically by using active Harvey-RAS protein or RAS-activating SOS1cat in dopaminergic cells.
  • The research employs functionalized magnetic nanoparticles to carry these proteins into cells, enabling targeted transport to areas crucial for neurite development.
  • This approach may enhance future cell replacement therapies using human-induced dopaminergic neurons in models of Parkinson's disease.
View Article and Find Full Text PDF