Publications by authors named "E Schlein"

Recent development of amyloid-β (Aβ)-targeted immunotherapies for Alzheimer's disease (AD) have highlighted the need for accurate diagnostic methods. Antibody-based positron emission tomography (PET) ligands are well suited for this purpose as they can be directed toward the same target as the therapeutic antibody. Bispecific, brain-penetrating antibodies can achieve sufficient brain concentrations, but their slow blood clearance remains a challenge, since it prolongs the time required to achieve a target-specific PET signal.

View Article and Find Full Text PDF

Background: The brain is a challenging target for antibody-based positron emission tomography (immunoPET) imaging due to the restricted access of antibody-based ligands through the blood-brain barrier (BBB). To overcome this physiological obstacle, we have previously developed bispecific antibody ligands that pass through the BBB via receptor-mediated transcytosis. While these radiolabelled ligands have high affinity and specificity, their long residence time in the blood and brain, typical for large molecules, poses another challenge for PET imaging.

View Article and Find Full Text PDF

Small molecule imaging agents such as [C]PiB, which bind to the core of insoluble amyloid-β (Aβ) fibrils, are useful tools in Alzheimer's disease (AD) research, diagnostics, and drug development. However, the [C]PiB PET signal saturates early in the disease progression and does not detect soluble or diffuse Aβ pathology which are believed to play important roles in the disease progression. Antibodies, modified into a bispecific format to enter the brain via receptor-mediated transcytosis, could be a suitable alternative because of their diversity and high specificity for their target.

View Article and Find Full Text PDF

Positron emission tomography (PET), a medical imaging technique allowing for studies of the living human brain, has gained an important role in clinical trials of novel drugs against Alzheimer's disease (AD). For example, PET data contributed to the conditional approval in 2021 of aducanumab, an antibody directed towards amyloid-beta (Aβ) aggregates, by showing a dose-dependent reduction in brain amyloid after treatment. In parallel to clinical studies, preclinical studies in animal models of Aβ pathology may also benefit from PET as a tool to detect target engagement and treatment effects of anti-Aβ drug candidates.

View Article and Find Full Text PDF

The positron emission tomography (PET) radioligand [C]UCB-J binds to synaptic vesicle protein 2A (SV2A) and is used to investigate synaptic density in the living brain. Clinical studies have indicated reduced [C]UCB-J binding in Alzheimer's disease (AD) and Parkinson's disease (PD) brains compared to healthy controls. Still, it is unknown whether [C]UCB-J PET can visualise synaptic loss in mouse models of these disorders.

View Article and Find Full Text PDF