Publications by authors named "E Schirwis"

Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth.

View Article and Find Full Text PDF

The histone 3 lysine 9 methyltransferase Setdb1 is essential for both stem cell pluripotency and terminal differentiation of different cell types. To shed light on the roles of Setdb1 in these mutually exclusive processes, we used mouse skeletal myoblasts as a model of terminal differentiation. studies on isolated single myofibres showed that Setdb1 is required for adult muscle stem cells expansion following activation.

View Article and Find Full Text PDF

Skeletal muscle regeneration relies on a pool of resident muscle stem cells called satellite cells (MuSCs). Following injury-induced destruction of the myofibers, quiescent MuSCs are activated and generate transient amplifying progenitors (myoblasts) that will fuse to form new myofibers. Here, we focus on the canonical Wnt signaling pathway and find that either conditional β-catenin disruption or activation in adult MuSCs results in perturbation of muscle regeneration.

View Article and Find Full Text PDF

Cell size is determined by the balance between protein synthesis and degradation. This equilibrium is affected by hormones, nutrients, energy levels, mechanical stress and cytokines. Mutations that inactivate myostatin lead to excessive muscle growth in animals and humans, but the signals and pathways responsible for this hypertrophy remain largely unknown.

View Article and Find Full Text PDF