In the frame of developing a sustainable chemical industry, heterogeneously catalyzed CO2 hydrogenation to methanol has attracted considerable interest. However, the Cu-Zn based catalyst system employed in this process is very dynamic, especially in the presence of the products methanol and water. Deactivation needs to be prevented, but its origin and mechanism are hardly investigated at high conversion where product condensation is possible.
View Article and Find Full Text PDFTargeted immunotherapy combinations, including the anti-CD38 monoclonal antibody (MoAb) daratumumab, have shown promising results in patients with relapsed/refractory multiple myeloma (RRMM), leading to a considerable increase in progression-free survival. However, a large fraction of patients inevitably relapse. To understand this, we investigated 32 relapsed MM patients treated with daratumumab, lenalidomide, and dexamethasone (Dara-Rd; NCT03848676).
View Article and Find Full Text PDFAnti-CD38 antibody therapies have transformed multiple myeloma (MM) treatment. However, a large fraction of patients inevitably relapses. To understand this, we investigated 32 relapsed MM patients treated with daratumumab, lenalidomide, and dexamethasone (Dara-Rd; NCT03848676 ).
View Article and Find Full Text PDFBackground: Limited data are available on the concordance between multiparameter flow cytometry (MFC) and next-generation sequencing (NGS) for minimal residual disease (MRD) detection in a large trial for multiple myeloma (MM) patients.
Methods: MRD was explored in the FORTE trial for transplant-eligible MM patients randomised to three carfilzomib-based induction-intensification-consolidation treatments and carfilzomib-lenalidomide (KR) R maintenance. MRD was assessed by 8-colour 2nd-generation flow cytometry in patients with ≥very good partial response before maintenance.
The microkinetics of the electrocatalytic oxygen evolution reaction substantially determines the performance in proton-exchange membrane water electrolysis. State-of-the-art nanoparticulated rutile IrO electrocatalysts present an excellent trade-off between activity and stability due to the efficient formation of intermediate surface species. To reveal and analyze the interaction of individual surface processes, a detailed dynamic microkinetic model approach is established and validated using cyclic voltammetry.
View Article and Find Full Text PDF