Due to the great significance of amino acids, a substantial number of research studies has been directed toward the development of effective and reliable platforms for their evaluation, detection, and identification. In order to support these studies, a new electrochemical platform based on PANI/ZnO nanowires' modified carbon inks screen-printed electrodes was developed for qualitative analysis of electroactive amino acids, with emphasis on tyrosine (Tyr) and tryptophan (Trp). A comparative investigation of the carbon ink before and after modification with the PANI/ZnO was performed by scanning electron microscopy and by Raman spectroscopy, confirming the presence of PANI and ZnO nanowires.
View Article and Find Full Text PDFThe iron superoxide dismutase (FeSOD) is a first barrier to defend photosynthetic organisms from superoxide radicals. Although it is broadly present in plants and bacteria, FeSODs are absent in animals. They belong to the same phylogenic family as Mn-containing SODs, which are also highly efficient at detoxifying superoxide radicals.
View Article and Find Full Text PDFWe report the integration of an automated chemical optical sensing unit for the parallel interrogation of 12 BICELLs in a sensing chip. The work was accomplished under the European Project Enviguard (FP7-OCEAN-2013-614057) with the aim of demonstrating an optical nano-biosensing unit for the in-situ detection of various chemical pollutants simultaneously in oceanic waters. In this context, we designed an optical sensing chip based on resonant nanopillars (R-NPs) transducers organized in a layout of twelve biophotonic sensing cells (BICELLs).
View Article and Find Full Text PDFThe enzyme-linked immunosorbent assay (ELISA) technique is based on the specific recognition ability of the molecular structure of an antigen (epitope) by an antibody and is likely the most important diagnostic technique used today in bioscience. With this methodology, it is possible to diagnose illness, allergies, alimentary fraud, and even to detect small molecules such as toxins, pesticides, heavy metals, etc. For this reason, any procedures that improve the detection limit, sensitivity or reduce the analysis time could have an important impact in several fields.
View Article and Find Full Text PDFNitric oxide cytotoxicity arises from its rapid conversion to peroxynitrite (ONOO(-)) in the presence of superoxide, provoking functional changes in proteins by nitration of tyrosine residues. The physiological significance of this post-translational modification is associated to tissue injury in animals, but has not been yet clarified in plants. The objective of this study was to establish new approaches that could help to understand ONOO(-) reactivity in plants.
View Article and Find Full Text PDF