Publications by authors named "E Sanchez-Gongora"

COT/Tpl-2 proto-oncogene encodes a serine/threonine kinase implicated in cellular activation. In this study we have identified the human COT gene promoter region and three different human COT transcripts. These transcripts, with the same initiation site, display heterogeneity in their 5' untranslated regions and in their subcellular localization.

View Article and Find Full Text PDF

Although free radicals have been traditionally implicated in cell injury, and associated to pathophysiological processes, recent data implicate them in cell signaling events. Free radicals are naturally occurring oxygen-,nitrogen-and sulfur-derived species with an unpaired electron, such as superoxide, hydroxyl radical or nitric oxide. In order to assess the role of free radicals in cell signaling, we have studies the modulator effect of oxygen and nitrogen active species on liver methionine adenosyltransferase (MAT), a key metabolic enzyme.

View Article and Find Full Text PDF

Liver methionine adenosyltransferase (MAT) plays a critical role in the metabolism of methionine converting this amino acid, in the presence of ATP, into S-adenosylmethionine. Here we report that hydrogen peroxide (H2O2), via generation of hydroxyl radical, inactivates liver MAT by reversibly and covalently oxidizing an enzyme site. In vitro studies using pure liver recombinant enzyme and mutants of MAT, where each of the 10 cysteine residues of the enzyme subunit were individually changed to serine by site-directed mutagenesis, identified cysteine 121 as the site of molecular interaction between H2O2 and liver MAT.

View Article and Find Full Text PDF

Methionine adenosyltransferase is a ubiquitous enzyme that catalyzes the only known route of biosynthesis of S-adenosylmethionine, the major methyl group donor in cell metabolism. In mammals, two different methionine adenosyltransferases exist: one is confined to the liver, and the other one is distributed in extrahepatic tissues. In the present study, we report the cloning of the 5'-flanking region of liver-specific methionine adenosyltransferase gene from rat.

View Article and Find Full Text PDF

Chinese hamster ovary cells were stably transfected with rat liver S-adenosylmethionine synthetase cDNA. As a result, S-adenosylmethionine synthetase activity increased 2.3-fold, an effect that was accompanied by increased S-adenosylmethionine, a depletion of ATP and NAD levels, elevation of the S-adenosylmethionine/S-adenosylhomocysteine ratio (the methylation ratio), increased DNA methylation and polyamine levels (spermidine and spermine), and normal GSH levels.

View Article and Find Full Text PDF