Background: Tracheostomy is a frequently performed procedure that allows for definitive airway access in critically ill patients. Complications associated with tracheostomy have been well documented in the literature. This study aims to examine if different tracheostomy techniques were associated with specific complications.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2011
Hydrogen sulfide (H2S) is a gaseous signaling molecule that appears to be involved in numerous biological processes, including regulation of blood pressure and vascular tone. The present study is designed to address the hypothesis that H2S is a functionally significant, endogenous dilator in the newborn cerebrovascular circulation. In vivo experiments were conducted using newborn pigs with surgically implanted, closed, cranial windows.
View Article and Find Full Text PDFGlutamate is the principal cerebral excitatory neurotransmitter and dilates cerebral arterioles to match blood flow to neural activity. Arterial contractility is regulated by local and global Ca(2+) signals that occur in smooth muscle cells, but modulation of these signals by glutamate is poorly understood. Here, using high-speed confocal imaging, we measured the Ca(2+) signals that occur in arteriole smooth muscle cells of newborn piglet tangential brain slices, studied signal regulation by glutamate, and investigated the physiological function of heme oxygenase (HO) and carbon monoxide (CO) in these responses.
View Article and Find Full Text PDFAstrocyte signals can modulate arteriolar tone, contributing to regulation of cerebral blood flow, but specific intercellular communication mechanisms are unclear. Here we used isolated cerebral arteriole myocytes, astrocytes, and brain slices to investigate whether carbon monoxide (CO) generated by the enzyme heme oxygenase (HO) acts as an astrocyte-to-myocyte gasotransmitter in the brain. Glutamate stimulated CO production by astrocytes with intact HO-2, but not those genetically deficient in HO-2.
View Article and Find Full Text PDFCarbon monoxide (CO) is an endogenous paracrine and autocrine gaseous messenger that regulates physiological functions in a wide variety of tissues. CO induces vasodilation by activating arterial smooth muscle large-conductance Ca2+-activated potassium (BK(Ca)) channels. However, the mechanism by which CO activates BK(Ca) channels remains unclear.
View Article and Find Full Text PDF