Publications by authors named "E S Umnyakova"

Article Synopsis
  • The use of biomaterials in medicine has improved drug delivery and decreased complications in procedures like transplantations and hemodialysis, but immune reactions remain a challenge.
  • Factor H (FH), a protein that regulates the complement system and dampens immune responses, can be recruited to biomedical surfaces using a cyclic peptide called 5C6, which helps reduce immune activation.
  • This research identifies the key structural elements of 5C6 necessary for effective binding to FH, enhancing its potential application as a therapeutic tool to minimize complement activation on biomaterials.
View Article and Find Full Text PDF

The widespread resistance to antibiotics in pathogenic bacteria makes the development of a new generation of antimicrobials an urgent task. The development of new antibiotics must be accompanied by a comprehensive study of all of their biological activities in order to avoid adverse side-effects from their application. Some promising antibiotic prototypes derived from the structures of arenicins, antimicrobial peptides from the lugworm , have been developed.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are not only cytotoxic towards host pathogens or cancer cells but also are able to act as immunomodulators. It was shown that some human and non-human AMPs can interact with complement proteins and thereby modulate complement activity. Thus, AMPs could be considered as the base for complement-targeted therapeutics development.

View Article and Find Full Text PDF
Article Synopsis
  • - Proline-rich antimicrobial peptides (PR-AMPs) like ChBac3.4, isolated from goat leukocytes, show strong effectiveness against Gram-negative bacteria with low toxicity to human cells, making them promising for antibiotic development.
  • - A study on ChBac3.4 explored its unique properties, antibacterial effectiveness against drug-resistant strains, and potential as a lead for both antimicrobial and anticancer therapies, while assessing how structural changes influenced toxicity and activity.
  • - Findings revealed that modifications such as terminal amidation and increased hydrophobicity altered the peptides' effectiveness and side effects, highlighting a balance between antibacterial potency and selectivity towards tumor cells, while some variants exhibited unexpected toxicity toward human red blood cells.
View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) were firstly discovered as cytotoxic substances that killed bacteria. Later they were described as biologically active peptides that are able not only to kill invaders but also to modulate host immunity. In particular, it is shown that human antimicrobial peptides are able to influence the activity of different innate and adaptive immunity components, thus, obviously, they also participate in autoimmune processes.

View Article and Find Full Text PDF