The widespread resistance to antibiotics in pathogenic bacteria makes the development of a new generation of antimicrobials an urgent task. The development of new antibiotics must be accompanied by a comprehensive study of all of their biological activities in order to avoid adverse side-effects from their application. Some promising antibiotic prototypes derived from the structures of arenicins, antimicrobial peptides from the lugworm , have been developed.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are not only cytotoxic towards host pathogens or cancer cells but also are able to act as immunomodulators. It was shown that some human and non-human AMPs can interact with complement proteins and thereby modulate complement activity. Thus, AMPs could be considered as the base for complement-targeted therapeutics development.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) were firstly discovered as cytotoxic substances that killed bacteria. Later they were described as biologically active peptides that are able not only to kill invaders but also to modulate host immunity. In particular, it is shown that human antimicrobial peptides are able to influence the activity of different innate and adaptive immunity components, thus, obviously, they also participate in autoimmune processes.
View Article and Find Full Text PDF