Azospirillum alphaproteobacteria, which live in the rhizosphere of many crops, are used widely as biofertilizers. Two-component signal transduction systems (TCSs) mediate the bacterial perception of signals and the corresponding adjustment of behavior facilitating the adaptation of bacteria to their habitats. In this study, we obtained the A.
View Article and Find Full Text PDFBacteria Azospirillum brasilense may swim and swarm owing to the rotation of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf). They also construct sessile biofilms on various interfaces. As compared to the wild-type strain Sp245, the previously characterized Fla Laf flhB1 mutant Sp245.
View Article and Find Full Text PDFCan J Microbiol
February 2019
The bacterium Azospirillum brasilense can swim and swarm owing to the rotation of a constitutive polar flagellum (Fla) and inducible lateral flagella, respectively. They also form biofilms on various interfaces. Experimental data on flagellar assembly and social behaviours in these bacteria are scarce.
View Article and Find Full Text PDFAzospirillum brasilense can swim and swarm owing to the activity of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf), respectively. Experimental data on the regulation of the Fla and Laf assembly in azospirilla are scarce. Here, the coding sequence (CDS) AZOBR_p1160043 (fabG1) for a putative 3-oxoacyl-[acyl-carrier protein (ACP)] reductase was found essential for the construction of both types of flagella.
View Article and Find Full Text PDFAzospirillum brasilense has the ability of swimming and swarming motility owing to the work of a constitutive polar flagellum and inducible lateral flagella, respectively. The interplay between these flagellar systems is poorly understood. One of the key elements of the flagellar export apparatus is the protein FlhB.
View Article and Find Full Text PDF