The self-assembly of conducting nanostructures is currently being investigated intensively in order to evaluate the feasibility of creating novel nanoelectronic devices and circuits using such pathways. In particular, methods based on so-called DNA Origami nanostructures have shown great potential in the formation of metallic nanowires. The main challenge of this method is the reproducible generation of very well-connected metallic nanostructures, which may be used as interconnects in future devices.
View Article and Find Full Text PDFWe introduce a method based on directed molecular self-assembly to manufacture and electrically characterise C-shape gold nanowires which clearly deviate from typical linear shape due to the design of the template guiding the assembly. To this end, gold nanoparticles are arranged in the desired shape on a DNA-origami template and enhanced to form a continuous wire through electroless deposition. C-shape nanowires with a size below 150nm on a [Formula: see text] substrate are contacted with gold electrodes by means of electron beam lithography.
View Article and Find Full Text PDFData on drug-drug interactions (DDI) of antineoplastic drugs with anticoagulants is scarce. We aim to evaluate factors associated with DDI of antineoplastic and supportive care drugs with anticoagulants resulting in modification of pharmacokinetics of these last mentioned. A literature review on DDI databases and summaries of products characteristics (SmPC) was done.
View Article and Find Full Text PDFJAMA
December 2015
Importance: Worsening chronic heart failure (HF) is a major public health problem.
Objective: To determine the optimal dose and tolerability of vericiguat, a soluble guanylate cyclase stimulator, in patients with worsening chronic HF and reduced left ventricular ejection fraction (LVEF).
Design, Setting, And Participants: Dose-finding phase 2 study that randomized 456 patients across Europe, North America, and Asia between November 2013 and January 2015, with follow-up ending June 2015.
The DNA origami strategy for assembling designed supramolecular complexes requires ssDNA as a scaffold strand. A system is described that was designed approximately one third the length of the M13 bacteriophage genome for ease of ssDNA production. Folding of the 2404-base ssDNA scaffold into a variety of origami shapes with high assembly yields is demonstrated.
View Article and Find Full Text PDF