An autonomous electrochemical system prototype for ammonia oxidation reaction (AOR) measurements was efficiently done inside a 4'' x 4'' x 8'' 2U Nanoracks module at the International Space Station (ISS). This device, the Ammonia Electrooxidation Lab at the ISS (AELISS), included an autonomous electrochemical system that complied with NASA ISS nondisclosure agreements, power, safety, security, size constrain, and material compatibility established for space missions. The integrated autonomous electrochemical system was tested on-ground and deployed to the International Space Station as a "proof-of-concept" ammonia oxidation reaction testing space device.
View Article and Find Full Text PDFThe synthesis of tetracyclic indole alkaloid (±)-decursivine was accomplished using BINOL-phosphoric acid catalyzed tandem oxidative cyclization as a key step with (bis(trifluoroacetoxy)iodo)benzene (PIFA) as an oxidizing agent. This represents one of the shortest and highest yielding routes for the synthesis of (±)-decursivine from readily available starting materials.
View Article and Find Full Text PDFOperando high-throughput evaluation of heterogeneous catalysts by laser-activated membrane introduction mass spectrometry (LAMIMS) elucidates the Pt loading dependence of methylcyclohexane dehydrogenation on platinized γ-alumina beads. A CO marking laser rapidly and sequentially heats catalyst beads positioned on a heat-dissipating carbon paper support that overlays a silicone membrane, separating the bead library reaction zone from a quadrupole mass analyzer. The toluene / peak varies logarithmically with Pt loading, suggesting that reactivity includes factors that are negatively correlated to Pt loading.
View Article and Find Full Text PDFRedox flow batteries (RFBs) are promising energy storage candidates for grid deployment of intermittent renewable energy sources such as wind power and solar energy. Various new redox-active materials have been introduced to develop cost-effective and high-power-density next-generation RFBs. Electrochemical kinetics play critical roles in influencing RFB performance, notably the overpotential and cell power density.
View Article and Find Full Text PDFThe electron density topology of carbon monoxide (CO) on dry and hydrated platinum is evaluated under the quantum theory of atoms in molecules (QTAIM) and by adsorbate orbital approaches. The impact of water co-adsorbate on the electronic, structural, and vibrational properties of CO on Pt are modelled by periodic density functional theory (DFT). At low CO coverage, increased hydration weakens C-O bonds and strengthens C-Pt bonds, as verified by changes in bond lengths and stretching frequencies.
View Article and Find Full Text PDF