The miniaturization of photonic technologies calls for a deliberate integration of diverse materials to enable novel functionalities in chip-scale devices. Topological photonic systems are a promising platform to couple structured light with solid-state matter excitations and establish robust forms of 1D polaritonic transport. Here, we demonstrate a mechanism to efficiently trap mid-IR structured phonon-polaritons in topological defects of a metasurface integrated with hexagonal boron nitride (hBN).
View Article and Find Full Text PDFCerebrovascular imaging of rodents is one of the trending applications of optoacoustics aimed at studying brain activity and pathology. Imaging of deep brain structures is often hindered by sub-optimal arrangement of the light delivery and acoustic detection systems. In our work we revisit the physics behind opto-acoustic signal generation for theoretical evaluation of optimal laser wavelengths to perform cerebrovascular optoacoustic angiography of rodents beyond the penetration barriers imposed by light diffusion in highly scattering and absorbing brain tissues.
View Article and Find Full Text PDFRaster-scan optoacoustic angiography at 532 nm wavelength with 50 μm lateral resolution at 2 mm diagnostic depth was used for quantitative characterization of neoangiogenesis in colon cancer models. Two tumor models of human colon adenocarcinoma (HT-29) and murine colon carcinoma (CT26) different in their histology and vascularization were compared. Tumors of both origins showed an inhomogeneous distribution of areas with high and low vascularization.
View Article and Find Full Text PDF