Apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC) is a 22 kDa protein that functions as the central adaptor for inflammasome assembly. ASC forms insoluble specks in monocytes undergoing pyroptosis, and the polymerization of ASC provides a template of CARDs that leads to proximity-mediated autoactivation of caspase-1 in canonical inflammasomes. However, specks are insoluble protein complexes, and solubility is typically important for protein function.
View Article and Find Full Text PDFObjectives: Increased monocyte distribution width (MDW) has recently been shown to be a reliable indicator of early sepsis detection. This study therefore sought to determine if inflammasome activation can be linked to monocyte size changes in sepsis.
Design: An in vitro sepsis model using bacterial endotoxin (lipopolysaccharide [LPS]) to study the effect of inflammasome activation on monocyte cell size distribution by microscopy and MDW measurements using a standard clinical hematology analyzer.
Inflammasome activation is regulated in part by the posttranslational modification of inflammasome proteins. Tyrosine phosphorylation is one possible modification. Having previously shown that the protein tyrosine kinase (PTK) inhibitor AG126 greatly inhibits inflammasome activation, we sought to uncover the target kinase.
View Article and Find Full Text PDFCaspase-1 is a zymogen whose activation predominantly depends upon the assembly of ASC monomers into insoluble prion-like polymers (specks). ASC polymers support caspase-1 dimer formation inducing a proximity mediated auto-activation of caspase-1. Therefore, the amount and nature of ASC monomers and polymers in lung bronchoalveolar lavage fluid (BALF) might serve as a marker of lung inflammasome activity.
View Article and Find Full Text PDF