Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes.
View Article and Find Full Text PDFSince the era of the widespread introduction of antibiotics into the human sphere of activity, the problem of antimicrobial resistance has become an urgent and very important topic around the world. Recently, coagulasonegative staphylococci (CoNS), which are representatives of opportunistic microorganisms of the microbiome of the skin and mucous membranes of healthy people, have made a certain contribution to its progression. For a long time, they did not pose a threat to patients, but in recent decades among microorganisms they have been seeded in more than two-thirds of patients with postoperative mediastinitis, catheter-associated infections, as well as from wounds of the neck vessels and the inguinal region separated by pacemaker beds.
View Article and Find Full Text PDFMovement proteins (MPs) encoded by plant viruses are essential for cell-to-cell transport of viral genomes through plasmodesmata. The genome of hibiscus green spot virus contains a module of two MP genes termed 'binary movement block' (BMB), encoding the proteins BMB1 and BMB2. Here, BMB1 is shown to induce a defense response in plants that inhibits BMB-dependent virus transport.
View Article and Find Full Text PDF