Publications by authors named "E S LEIKINA"

Article Synopsis
  • Osteoclasts are special cells that help break down bone, and they work together to keep our bones healthy throughout our lives.
  • A protein called La is found on the surface of these cells, and it helps them fuse and become more powerful in breaking down bone.
  • Scientists discovered that a certain type of chemical signal, called reactive oxygen species (ROS), changes the La protein, helping it move to the surface and making the osteoclasts better at their job, which could lead to new treatments for bone diseases.
View Article and Find Full Text PDF

The bone-resorbing activity of osteoclasts plays a critical role in the life-long remodeling of our bones that is perturbed in many bone loss diseases. Multinucleated osteoclasts are formed by the fusion of precursor cells, and larger cells - generated by an increased number of cell fusion events - have higher resorptive activity. We find that osteoclast fusion and bone-resorption are promoted by reactive oxygen species (ROS) signaling and by an unconventional low molecular weight species of La protein, located at the osteoclast surface.

View Article and Find Full Text PDF

Multinucleated osteoclasts, essential for skeletal remodeling in health and disease, are formed by the fusion of osteoclast precursors, where each fusion event raises their bone-resorbing activity. Here we show that the nuclear RNA chaperone, La protein has an additional function as an osteoclast fusion regulator. Monocyte-to-osteoclast differentiation starts with a drastic decrease in La levels.

View Article and Find Full Text PDF

Muscle cell fusion is a multistep process where the final step of the reaction drives progression beyond early hemifusion events to complete fusion. This step requires activity of the muscle-specific fusogen Myomerger, a single-pass transmembrane protein containing 84 amino acids with an ectodomain that includes two α-helices. Previous studies have demonstrated that Myomerger acts by destabilizing membranes through generation of elastic stresses in the outer leaflet of the plasma membrane.

View Article and Find Full Text PDF

Lipid mixing (redistribution of lipid probes between fusing membranes) has been widely used to study early stages of relatively fast viral and intracellular fusion processes that take seconds to minutes. Lipid mixing assays are especially important for identification of hemifusion intermediates operationally defined as lipid mixing without content mixing. Due to unsynchronized character and the slow rate of the differentiation processes that prime the cells for cell-cell fusion processes in myogenesis, osteoclastogenesis and placentogenesis, these fusions take days.

View Article and Find Full Text PDF