Publications by authors named "E S Korobkina"

Brown adipose tissue (BAT) engages futile fatty acid synthesis-oxidation cycling, the purpose of which has remained elusive. Here, we show that ATP-citrate lyase (ACLY), which generates acetyl-CoA for fatty acid synthesis, promotes thermogenesis by mitigating metabolic stress. Without ACLY, BAT overloads the tricarboxylic acid cycle, activates the integrated stress response (ISR) and suppresses thermogenesis.

View Article and Find Full Text PDF

Adaptive thermogenesis by brown adipose tissue (BAT) dissipates calories as heat, making it an attractive anti-obesity target. Yet how BAT contributes to circulating metabolite exchange remains unclear. Here, we quantified metabolite exchange in BAT and skeletal muscle by arteriovenous metabolomics during cold exposure in fed male mice.

View Article and Find Full Text PDF

Nanomaterials can intensively scatter and/or reflect radiation. Such processes and materials are of theoretical and practical interest. Here, we study the quasi-specular reflections (QSRs) of cold neutrons (CNs) and the reflections of very cold neutrons (VCNs) from nanodiamond (ND) powders.

View Article and Find Full Text PDF

For more than a decade, detonation nanodiamond (DND) powders have been actively studied as a material for efficient reflectors of very cold neutrons (VCNs) and cold neutrons. In this work, we experimentally demonstrate, for the first time, the possibility of enhanced directional extraction of a VCN beam using a reflector made of fluorinated DND powder. With respect to the theoretical flux calculated from an isotropic source at the bottom of the reflector cavity, the gain in the VCN flux density along the beam axis is ∼10 for the neutron velocities of ∼57 and ∼75 m/s.

View Article and Find Full Text PDF

Mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) regulates metabolism, cell proliferation, and cell survival. mTORC2 activity is stimulated by growth factors, and it phosphorylates the hydrophobic motif site of the AGC kinases AKT, SGK, and PKC. However, the proteins that interact with mTORC2 to control its activity and localization remain poorly defined.

View Article and Find Full Text PDF