Publications by authors named "E S J Arner"

Metastasis causes most cancer deaths and reflects transitions from primary tumor escape to seeding and growth at metastatic sites. Epithelial-to-mesenchymal transition (EMT) is important early in metastasis to enable cancer cells to detach from neighboring cells, become migratory, and escape the primary tumor. While different phases of metastasis expose cells to variable nutrient environments and demands, the metabolic requirements and plasticity of each step are uncertain.

View Article and Find Full Text PDF

The receptor tyrosine kinase AXL promotes tumor progression, metastasis, and therapy resistance through the induction of epithelial-mesenchymal transition (EMT). Here, we found that activation of AXL resulted in the phosphorylation of TANK-binding kinase 1 (TBK1) and the downstream activation of AKT3 and Snail, a transcription factor critical for EMT. Mechanistically, we showed that TBK1 directly bound to and phosphorylated AKT3 in a manner dependent on the multiprotein complex mTORC1.

View Article and Find Full Text PDF

Oxidative stress, that is, an unbalanced increase in reactive oxygen species (ROS), contributes to tumor-induced immune suppression and limits the efficacy of immunotherapy. Cancer cells have inherently increased ROS production, intracellularly through metabolic perturbations and extracellularly through activation of NADPH oxidases, which promotes cancer progression. Further increased ROS production or impaired antioxidant systems, induced, for example, by chemotherapy or radiotherapy, can preferentially kill cancer cells over healthy cells.

View Article and Find Full Text PDF

Female individuals have an increased prevalence of many Th17 cell-mediated diseases, including asthma. Androgen signaling decreases Th17 cell-mediated airway inflammation, and Th17 cells rely on glutaminolysis. However, it remains unclear whether androgen receptor (AR) signaling modifies glutamine metabolism to suppress Th17 cell-mediated airway inflammation.

View Article and Find Full Text PDF

The genus Acanthamoeba comprises facultative pathogens, causing Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). In both diseases, treatment options are limited, and drug development is challenging. This study aimed to investigate the role of the large thioredoxin reductase selenoprotein of Acanthamoeba (AcTrxR-L) as a potential drug target assessing the effects of the thioredoxin reductase inhibitors auranofin, TRi-1, and TRi-2 on AcTrxR-L activity and on the viability of Acanthamoeba trophozoites.

View Article and Find Full Text PDF