Inter-individual variability in drug responses is significantly influenced by genetic factors, underscoring the importance of population-specific pharmacogenomic studies to optimize clinical outcomes. In this study, we analyzed whole genome sequencing data from 949 unrelated Thai individuals and conducted an in-depth analysis of 3239 genes involved in drug pharmacokinetics, pharmacodynamics, or immune-mediated adverse drug reactions. We identified 43 single nucleotide polymorphisms (SNPs), 134 diplotypes, and 15 human leukocyte antigen (HLA) alleles, all with moderate to high clinical significance.
View Article and Find Full Text PDFBackground: Banana allergy is on the rise in tropical regions. Advances in genomics and candidate gene identification have increased interest in genetic factors in food allergies. However, the genetic basis of IgE-mediated banana allergy is underexplored.
View Article and Find Full Text PDFMulti-gene panel testing has led to the detection of pathogenic/likely pathogenic (P/LP) variants in many cancer susceptibility genes in patients with breast-ovarian cancer spectrum. However, the clinical and genomic data of Asian populations, including Thai cancer patients, was underrepresented, and the clinical significance of multi-gene panel testing in Thailand remains undetermined. In this study, we collected the clinical and genetic data from 4567 Thai patients with cancer in the hereditary breast-ovarian cancer (HBOC) spectrum who underwent multi-gene panel testing.
View Article and Find Full Text PDFNanopore sequencing has been examined as a method for rapid and high-resolution human leukocyte antigen (HLA) typing in recent years. We aimed to apply ultrarapid nanopore-based HLA typing for HLA class I alleles associated with drug hypersensitivity, including HLA-A*31:01, HLA-B*15:0, and HLA-C*08:01. Most studies have used the Oxford Nanopore Ligation Sequencing kit for HLA typing, which requires several enzymatic reactions and remains relatively expensive, even when the samples are multiplexed.
View Article and Find Full Text PDFIntroduction Peutz-Jeghers syndrome (PJS) is a rare autosomal dominant inherited disorder caused by germline mutations in the serine-threonine kinase 11 () tumor suppressor gene. This syndrome is characterized by hamartomatous gastrointestinal polyps, mucocutaneous melanin pigmentation, and a higher risk of developing various cancers. Methods We summarized the clinical and molecular characteristics of five unrelated Thai patients with PJS.
View Article and Find Full Text PDF