Background: Several blood-based biomarkers offer the opportunity of in vivo detection of brain pathology and neurodegeneration in Alzheimer disease with high specificity and sensitivity, but the performance of amyloid-β (Aβ) measurements remains under evaluation. Autosomal dominant Alzheimer disease (ADAD) with mutations in PSEN1, PSEN2 and APP can be studied as a model for sporadic Alzheimer disease. However, clarifying the genetic effects on the Aβ-levels in different matrices such as cerebrospinal fluid or plasma is crucial for generalizability and utility of data.
View Article and Find Full Text PDFBackground And Objectives: Discordance between CSF and PET biomarkers of β-amyloid (Aβ) might reflect an imbalance between soluble and aggregated species, possibly reflecting disease heterogeneity. Previous studies generally used binary cutoffs to assess discrepancies in CSF/PET biomarkers, resulting in a loss of information on the extent of discordance. In this study, we (1) jointly modeled Aβ-CSF/PET data to derive a continuous measure of the imbalance between soluble and fibrillar pools of Aβ, (2) investigated factors contributing to this imbalance, and (3) examined associations with cognitive trajectories.
View Article and Find Full Text PDFThe recent progress in the development of in vivo biomarkers is rapidly changing how neurodegenerative diseases are conceptualized and diagnosed and how clinical trials are designed today. Alzheimer's disease (AD) - the most common neurodegenerative disorder - is characterized by a complex neuropathology involving the deposition of extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) of hyperphosphorylated tau proteins, accompanied by the activation of glial cells, i.e.
View Article and Find Full Text PDFBackground: Plasma assays for the detection of Alzheimer's disease neuropathological changes are receiving ever increasing interest. The concentration of plasma glial fibrillary acidic protein (GFAP) has been suggested as a potential marker of astrocytes or recently, amyloid-β burden, although this hypothesis remains unproven. We compared plasma GFAP levels with the astrocyte tracer C-Deuterium-L-Deprenyl (C-DED) in a multi-modal PET design in participants with sporadic and Autosomal Dominant Alzheimer's disease.
View Article and Find Full Text PDF