Publications by authors named "E Rijntjes"

Iodothyronine deiodinases (Dio) are selenocysteine-containing membrane enzymes that activate and inactivate the thyroid hormones (TH) through reductive iodide eliminations. The three deiodinase isoforms are homodimers sharing highly conserved amino acid sequences, but they differ in their regioselectivities for the deiodination reaction and regulatory features. We have now solved a crystal structure of the mouse deiodinase 2 (Dio2) catalytic domain.

View Article and Find Full Text PDF

Introduction: Severely burned patients exhibit increased nutritional requirements and are at high risk of developing sepsis. Selenium is an essential trace element supporting antioxidant and anti-inflammatory pathways, mediated by incorporation into selenoproteins. The selenium status may affect sepsis risk in burn injury.

View Article and Find Full Text PDF

Objective: Ghrelin is an orexigenic peptide that becomes post-translationally modified. Natural autoantibodies to ghrelin (ghrelin-aAb) have been described in healthy subjects, in eating disorders and rheumatic diseases, with potential clinical relevance. Despite these important reports, the data base on the prevalence and physiological role is small and technical approaches for assessing ghrelin-aAb are few, encouraging respective research for improving knowledge on the potential endocrine significance.

View Article and Find Full Text PDF

Hyperthyroidism is a well-known trigger of high bone turnover that can lead to the development of secondary osteoporosis. Previously, we have shown that blocking bone morphogenetic protein (BMP) signaling systemically with BMPR1A-Fc can prevent bone loss in hyperthyroid mice. To distinguish between bone cell type-specific effects, conditional knockout mice lacking Bmpr1a in either osteoclast precursors (LysM-Cre) or osteoprogenitors (Osx-Cre) were rendered hyperthyroid and their bone microarchitecture, strength and turnover were analyzed.

View Article and Find Full Text PDF

Oxidative stress, systemic inflammation, and metabolic derangements are hallmarks of burn pathophysiology. Severely burned patients are highly susceptible to infectious complications. Selenium-binding protein 1 (SELENBP1) modulates intracellular redox homeostasis, and elevated serum concentrations have been associated with adverse clinical outcomes in trauma patients.

View Article and Find Full Text PDF