Experimental evidence of photon Wannier-stark ladders (WSLs) and Zener tunneling (ZT) in one dimensional dual-periodical (DP) optical superlattices based on Porous Silicon (PSi), is presented. An introduction of linear gradient in physical thickness of the layers, composed of five stacks of two different periodic substructures, resulted in the appearance of four WSLs resonances and resonant Zener tunneling of nearest resonances of two consecutive WSLs. Theoretical analysis of time-resolved reflection spectra as a function of gradient reveals the presence of photonic Bloch oscillations (BOs) and an eventual tunneling at a specific value of linear gradient (20%), has been demonstrated through scattering maps.
View Article and Find Full Text PDFA multiple-scattering theory is applied to study the homogenization of clusters of elastic cylinders distributed in a isotropic lattice and embedded in a viscous fluid. Asymptotic relations are derived and employed to obtain analytical formulas for the effective parameters of homogenized clusters in which the underlying lattice has a low filling fraction. It is concluded that such clusters behave, in the low frequency limit, as an effective elastic medium.
View Article and Find Full Text PDF: Theoretical demonstration and experimental evidence of photon Bloch oscillations and Wannier-Stark ladders (WSLs) in dual-periodical (DP) multilayers, based on porous silicon, are presented. An introduction of the linear gradient in refractive indices in DP structure, which is composed by stacking two different periodic substructures N times, resulted in the appearance of WSLs. Theoretical time-resolved reflection spectrum shows the photon Bloch oscillations with a period of 130 fs.
View Article and Find Full Text PDF