As pH is fundamental to all biological processes, pH-responsive bacterial genetic circuits enable precise sensing in any environment. Where the unintentional release of engineered bacteria poses a concern, coupling pH sensing to the expression of a toxin creates an effective bacterial containment system. Here, we present a pH-sensitive kill switch (acidic termination of replicating population [acidTRP]), based on the Escherichia coli asr promoter, with a survival ratio of <1 in 10.
View Article and Find Full Text PDFThis study is significant because it demonstrates an attempt to design a scaffold specifically for small intestine using a novel fabrication method, resulting in an architecture that resembles intestinal villi. In addition, we use the versatile polymer poly(glycerol sebacate) (PGS) for artificial intestine, which has tunable mechanical and degradation properties that can be harnessed for further fine-tuning of scaffold design. Moreover, the utilization of PGS allows for future development of growth factor and drug delivery from the scaffolds to promote artificial intestine formation.
View Article and Find Full Text PDFThe evolutionary stability of synthetic genetic circuits is key to both the understanding and application of genetic control elements. One useful but challenging situation is a switch between life and death depending on environment. Here are presented "essentializer" and "cryodeath" circuits, which act as kill switches in Escherichia coli.
View Article and Find Full Text PDFThe application of composite or consolidated tailings (CT) technology provides Alberta's oil sands industry with a means of reducing the volume of the fines fraction in extraction tailings and allows for faster reclamation and revegetation of mining sites. This study examined the effects of coagulant aids (gypsum and alum), used in the production of CT, on the ion content, growth, and survival of greenhouse-grown red-osier dogwood (Cornus sericea L. subsp.
View Article and Find Full Text PDF