Background: The human gut microbiome strongly influences host metabolism by fermenting dietary components into metabolites that signal to the host. Our previous work has shown that Intestinimonas butyriciproducens is a prevalent commensal bacterium with the unique ability to convert dietary fructoselysine to butyrate, a well-known signaling molecule with proven health benefits. Dietary fructoselysine is an abundant Amadori product formed in foods during thermal treatment and is part of foods rich in dietary advanced glycation end products which have been associated with cardiometabolic disease.
View Article and Find Full Text PDFAims: Duodenal Mucosal Resurfacing (DMR) is an endoscopic ablation technique aimed at improving glycemia in patients with type 2 diabetes mellitus (T2DM). Although the exact underlying mechanism is still unclear, it is postulated that the DMR-induced improvements are the result of changes in the duodenal mucosa. For this reason, we assessed macroscopic and microscopic changes in the duodenal mucosa induced by DMR + GLP-1RA.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
November 2024
Imidazole Propionate (ImP), a gut-derived metabolite from histidine, affects insulin signaling in mice and is elevated in type 2 diabetes (T2D). However, the source of histidine and the role of the gut microbiota remain unclear. We conducted an intervention study in mice and humans, comparing ImP kinetics in mice on a high-fat diet with varying histidine levels and antibiotics, and assessed ImP levels in healthy and T2D subjects with histidine supplementation.
View Article and Find Full Text PDFIndividuals with type 2 diabetes (T2D) show signs of low-grade inflammation, which is related to the development of insulin resistance and beta-cell dysfunction. However, the underlying triggers remain unknown. The gut microbiota is a plausible source as it comprises pro-inflammatory bacteria, bacterial metabolites and viruses, including (bacterio)phages.
View Article and Find Full Text PDFBackground: The microbiota-derived short chain fatty acid butyrate has been shown to lower blood pressure (BP) in rodent studies. Nonetheless, the net effect of butyrate on hypertension in humans remains uncovered. In this study, for the first time, we aimed to determine the effect of oral butyrate on BP in patients with hypertension.
View Article and Find Full Text PDF