Publications by authors named "E R WOODS"

Purpose: We sought to evaluate outcomes for clinical management after a genetic diagnosis from the Deciphering Developmental Disorders study.

Methods: Individuals in the Deciphering Developmental Disorders study who had a pathogenic/likely pathogenic genotype in the DECIPHER database were selected for inclusion ( = 5010). Clinical notes from regional clinical genetics services notes were reviewed to assess predefined clinical outcomes relating to interventions, prenatal choices, and information provision.

View Article and Find Full Text PDF

is a leading cause of bacteria-associated mortality worldwide. This is largely because infection sites are often difficult to localize and the bacteria forms biofilms which are not effectively cleared using classical antibiotics. Therefore, there is a need for new tools to both image and treat infections.

View Article and Find Full Text PDF

The development of sustainable transportation and communication systems requires an increase in both energy density and capacity retention of Li-batteries. Using substrates forming a solid solution with body-centered cubic Li enhances the cycle stability of anode-less batteries. However, it remains unclear how the substrate microstructure affects the lithiation behavior.

View Article and Find Full Text PDF

Staphylococcus aureus () is an opportunistic human pathogen that causes over one million deaths around the world each year. We recently identified a family of serine hydrolases termed fluorophosphonate binding hydrolases (Fphs) that play important roles in lipid metabolism and colonization of a host. Because many of these enzymes are only expressed in bacteria, they are valuable targets for diagnostics and therapeutics.

View Article and Find Full Text PDF

Epoxytiglianes are a novel class of diterpene esters. The prototype epoxytigliane, EBC-46 (tigilanol tiglate), is a potent anti-cancer agent in clinical development for local treatment of a range of human and animal tumors. EBC-46 also consistently promotes wound re-epithelialization at the treatment sites, mediated via activation of classical protein kinase C (PKC) isoforms.

View Article and Find Full Text PDF