Publications by authors named "E R Vimina"

Cancer drug response (CDR) prediction is an important area of research that aims to personalize cancer therapy, optimizing treatment plans for maximum effectiveness while minimizing potential negative effects. Despite the advancements in Deep learning techniques, the effective integration of multi-omics data for drug response prediction remains challenging. In this paper, a regression method using Deep ResNet for CDR (DRN-CDR) prediction is proposed.

View Article and Find Full Text PDF

The local disruptions caused by the genes of one disease can influence the pathways associated with the other diseases resulting in comorbidity. For gene therapies, it is necessary to prioritize the key genes that regulate common biological mechanisms to tackle the issues caused by overlapping diseases. This work proposes a clustering-based computational approach for prioritising the comorbid genes within the overlapping disease modules by analyzing Protein-Protein Interaction networks.

View Article and Find Full Text PDF

Three-dimensional protein structure prediction is one of the major challenges in bioinformatics. According to recent research findings, real-valued distance prediction plays a vital role in determining the unique three-dimensional protein structure. This paper proposes a novel methodology involving a deep residual dense network (DRDN) for predicting protein real-valued distance.

View Article and Find Full Text PDF

Protein Structure Prediction (PSP) is considered to be a complicated problem in computational biology. In spite of, the remarkable progress made by the co-evolution-based method in PSP, it is still a challenging and unresolved problem. Recently, along with co-evolutionary relationships, deep learning approaches have been introduced in PSP that lead to significant progress.

View Article and Find Full Text PDF