We present a neural-network-based high-throughput molecular conformer-generation algorithm. A chemical graph-convolutional network is trained to predict low-energy conformers in internal coordinate representation (bond lengths, bond, and torsion angles), starting from two-dimensional (2D) chemical topology. Generative neural network (NN) architecture performs denoising from torsion space, producing conformer ensembles with populations that are well correlated with torsion energy profiles.
View Article and Find Full Text PDFWe present a graph-convolutional neural network (GCNN)-based method for learning and prediction of statistical torsional profiles (STP) in small organic molecules based on the experimental X-ray structure data. A specialized GCNN torsion profile model is trained using the structures in the Crystallography Open Database (COD). The GCNN-STP model captures torsional preferences over a wide range of torsion rotor chemotypes and correctly predicts a variety of effects from the vicinal atoms and moieties.
View Article and Find Full Text PDFA multicenter prospective epidemiological survey on the etiologic agents of invasive candidosis was conducted in Russia in the period of 2012-2014. Samples were collected from 284 patients with invasive candidosis and Candida species isolated by culture. The species were identified by DNA sequencing and MALDI-TOF massspectrometry.
View Article and Find Full Text PDFCommunication of data and ideas within a medicinal chemistry project on a global as well as local level is a crucial aspect in the drug design cycle. Over a time frame of eight years, we built and optimized FOCUS, a platform to produce, visualize, and share information on various aspects of a drug discovery project such as cheminformatics, data analysis, structural information, and design. FOCUS is tightly integrated with internal services that involve-among others-data retrieval systems and in-silico models and provides easy access to automated modeling procedures such as pharmacophore searches, R-group analysis, and similarity searches.
View Article and Find Full Text PDFThe function of a protein is determined by its intrinsic activity in the context of its subcellular distribution. Membranes localize proteins within cellular compartments and govern their specific activities. Discovering such membrane-protein interactions is important for understanding biological mechanisms and could uncover novel sites for therapeutic intervention.
View Article and Find Full Text PDF