Publications by authors named "E R Mukhametova"

Objective: To evaluate the effect of transcutaneous (tSCS) and epidural electrical spinal cord stimulation (EES) in facilitating volitional movements, balance, and nonmotor functions, in this observational study, tSCS and EES were consecutively tested in 2 participants with motor complete spinal cord injury (SCI).

Participants And Methods: Two participants (a 48-year-old woman and a 28-year-old man), both classified as motor complete spinal injury, were enrolled in the study. Both participants went through a unified protocol, such as an initial electrophysiological assessment of neural connectivity, consecutive tSCS and EES combined with 8 wks of motor training with electromyography (EMG) and kinematic evaluation.

View Article and Find Full Text PDF

Electrical stimulation of the cerebral cortex (ESCC) has been used to treat intractable neuropathic pain for nearly two decades, however, no standardized approach for this technique has been developed. In order to optimize targeting and validate the effect of ESCC before placing the permanent grid, we introduced initial assessment with trial stimulation, using a temporary grid of subdural electrodes. In this retrospective study we evaluate the role of electrode location on cerebral cortex in control of neuropathic pain and the role of trial stimulation in target-optimization for ESCC.

View Article and Find Full Text PDF

Photopharmacology is a unique approach that through a combination of photochemistry methods and advanced life science techniques allows the study and control of specific biological processes, ranging from intracellular pathways to brain circuits. Recently, a first photochromic channel blocker of anion-selective GABA receptors, the azobenzene-nitrazepam-based photochromic compound (Azo-NZ1), has been described. In the present study, using patch-clamp technique in heterologous system and in mice brain slices, site-directed mutagenesis and molecular modeling we provide evidence of the interaction of Azo-NZ1 with glycine receptors (GlyRs) and determine the molecular basis of this interaction.

View Article and Find Full Text PDF

Glycine receptors (GlyRs) are indispensable for maintaining excitatory/inhibitory balance in neuronal circuits that control reflexes and rhythmic motor behaviors. Here we have developed Glyght, a GlyR ligand controlled with light. It is selective over other Cys-loop receptors, is active in vivo, and displays an allosteric mechanism of action.

View Article and Find Full Text PDF