American women with obesity have an increased incidence of triple-negative breast cancer (TNBC). The impact of obesity conditions on the tumor microenvironment is suspected to accelerate TNBC progression; however, the specific mechanism(s) remains elusive. This study explores the hypothesis that obesity upregulates leukemia inhibitory factor receptor (LIFR) oncogenic signaling in TNBC and assesses the efficacy of LIFR inhibition with EC359 in blocking TNBC progression.
View Article and Find Full Text PDFThe paracrine actions of adipokine plasminogen activator inhibitor-1 (PAI-1) are implicated in obesity-associated tumorigenesis. Here, we show that PAI-1 mediates extracellular matrix (ECM) signaling via epigenetic repression of DKK1 in endometrial epithelial cells (EECs). While the loss of DKK1 is known to increase β-catenin accumulation for WNT signaling activation, this epigenetic repression causes β-catenin release from transmembrane integrins.
View Article and Find Full Text PDFOvarian cancer (OCa) is the deadliest of all gynecological cancers. The standard treatment for OCa is platinum-based chemotherapy, such as carboplatin or cisplatin in combination with paclitaxel. Most patients are initially responsive to these treatments; however, nearly 90% will develop recurrence and inevitably succumb to chemotherapy-resistant disease.
View Article and Find Full Text PDFOf all gynecologic cancers, epithelial-ovarian cancer (OCa) stands out with the highest mortality rates. Despite all efforts, 90% of individuals who receive standard surgical and cytotoxic therapy experience disease recurrence. The precise mechanism by which leukemia inhibitory factor (LIF) and its receptor (LIFR) contribute to the progression of OCa remains unknown.
View Article and Find Full Text PDFOvarian cancer (OCa) is the most lethal form of gynecologic cancer, and the tumor heterogeneities at the molecular, cellular, and tissue levels fuel tumor resistance to standard therapies and pose a substantial clinical challenge. Here, we tested the hypothesis that the heightened basal endoplasmic reticulum stress (ERS) observed in OCa represents an exploitable vulnerability and may overcome tumor heterogeneity. Our recent studies identified LIPA as a novel target to induce ERS in cancer cells using the small molecule ERX-41.
View Article and Find Full Text PDF