Background: The escalating global scarcity of skilled health care professionals is a critical concern, further exacerbated by rising stress levels and clinician burnout rates. Artificial intelligence (AI) has surfaced as a potential resource to alleviate these challenges. Nevertheless, it is not taken for granted that AI will inevitably augment human performance, as ill-designed systems may inadvertently impose new burdens on health care workers, and implementation may be challenging.
View Article and Find Full Text PDFIntroduction: Mobilization protocols are safe and feasible for critically ill pediatric patients in the intensive care unit (ICU), but barriers exist to sustainability. This study described a focused early mobility protocol, sustained over 5 years, which is on time for therapy consults and patient mobilization at a single institution.
Methods: A formal ICU mobility protocol was implemented as part of a unit-wide ICU liberation bundle.
Inadequate response to androgen deprivation therapy (ADT) frequently arises in prostate cancer, driven by cellular mechanisms that remain poorly understood. Here, we integrated single-cell RNA sequencing, single-cell multiomics, and spatial transcriptomics to define the transcriptional, epigenetic, and spatial basis of cell identity and castration response in the mouse prostate. Leveraging these data along with a meta-analysis of human prostates and prostate cancer, we identified cellular orthologs and key determinants of ADT response and resistance.
View Article and Find Full Text PDFSingle-cell sequencing provides detailed insights into individual cell behaviors within complex systems based on the assumption that each cell is uniquely isolated. However, doublets-where two or more cells are sequenced together-disrupt this assumption and can lead to potential data misinterpretations. Traditional doublet detection methods primarily rely on simulated genomic data, which may be less effective in homogeneous cell populations and can introduce biases from experimental processes.
View Article and Find Full Text PDFPolyelectrolyte complex nanoparticles (PECNPs) often fully dissociate into individual polycations (PC) and polyanions (PA) at high salinities. Herein, we introduce a novel type of colloidally stable PECNP in which the PC is cross-linked, in this case branched polyethylenimine (PEI) to limit this dissociation, even in solutions up to 5.2 M NaCl or 5.
View Article and Find Full Text PDF