Background: It has been two centuries since Petrus Camper identified superficial fascia and over 175 years since Sir Astley Cooper wrote his book on the anatomy of the breast. In the 1990s, Ted Lockwood taught us the importance of the superficial fascia layers in body contouring procedures he pioneered. These descriptions, however, fail to explain the three-dimensional fascial system in the breast.
View Article and Find Full Text PDFPhotobody localization of Arabidopsis (Arabidopsis thaliana) phytochrome B (phyB) fused to green fluorescent protein (PBG) correlates closely with the photoinhibition of hypocotyl elongation. However, the amino-terminal half of phyB fused to green fluorescent protein (NGB) is hypersensitive to light despite its inability to localize to photobodies. Therefore, the significance of photobodies in regulating hypocotyl growth remains debatable.
View Article and Find Full Text PDFBackground: The homeobox transcription factor Engrailed2 (En2) has been studied extensively in neurodevelopment, particularly in the midbrain/hindbrain region and cerebellum, where it exhibits dynamic patterns of expression and regulates cell patterning and morphogenesis. Because of its roles in regulating cerebellar development and evidence of cerebellar pathology in autism spectrum disorder (ASD), we previously examined an ENGRAILED2 association and found evidence to support EN2 as a susceptibility gene, a finding replicated by several other investigators. However, its functions at the cell biological level remain undefined.
View Article and Find Full Text PDFPlant genomes are extremely sensitive to, and can be developmentally reprogrammed by environmental light cues. Here using rolling-circle amplification of gene-specific circularizable oligonucleotides coupled with fluorescence in situ hybridization, we demonstrate that light triggers a rapid repositioning of the Arabidopsis light-inducible chlorophyll a/b-binding proteins (CAB) locus from the nuclear interior to the nuclear periphery during its transcriptional activation. CAB repositioning is mediated by the red/far-red photoreceptors phytochromes (PHYs) and is inhibited by repressors of PHY signalling, including COP1, DET1 and PIFs.
View Article and Find Full Text PDFPlant development is profoundly regulated by ambient light cues through the red/far-red photoreceptors, the phytochromes. Early phytochrome signaling events include the translocation of phytochromes from the cytoplasm to subnuclear domains called photobodies and the degradation of antagonistically acting phytochrome-interacting factors (PIFs). We recently identified a key phytochrome signaling component, HEMERA (HMR), that is essential for both phytochrome B (phyB) localization to photobodies and PIF degradation.
View Article and Find Full Text PDF