Markov state models (MSMs) have proven valuable in studying dynamics of protein conformational changes via statistical analysis of molecular dynamics (MD) simulations. In MSMs, the complex configuration space is coarse-grained into conformational states, with dynamics modeled by a series of Markovian transitions among these states at discrete lag times. Constructing the Markovian model at a specific lag time necessitates defining states that circumvent significant internal energy barriers, enabling internal dynamics relaxation within the lag time.
View Article and Find Full Text PDFMarkov state models (MSMs) have proven valuable in studying the dynamics of protein conformational changes via statistical analysis of molecular dynamics simulations. In MSMs, the complex configuration space is coarse-grained into conformational states, with dynamics modeled by a series of Markovian transitions among these states at discrete lag times. Constructing the Markovian model at a specific lag time necessitates defining states that circumvent significant internal energy barriers, enabling internal dynamics relaxation within the lag time.
View Article and Find Full Text PDFLigand unbinding is mediated by its free energy change, which has intertwined contributions from both energy and entropy. It is important, but not easy, to quantify their individual contributions to the free energy profile. We model hydrophobic ligand unbinding for two systems, a methane particle and a C fullerene, both unbinding from hydrophobic pockets in all-atom water.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2023
Crystal nucleation is relevant across the domains of fundamental and applied sciences. However, in many cases, its mechanism remains unclear due to a lack of temporal or spatial resolution. To gain insights into the molecular details of nucleation, some form of molecular dynamics simulations is typically performed; these simulations, in turn, are limited by their ability to run long enough to sample the nucleation event thoroughly.
View Article and Find Full Text PDFWhen examining dynamics occurring at nonzero temperatures, both energy and entropy must be taken into account to describe activated barrier crossing events. Furthermore, good reaction coordinates need to be constructed to describe different metastable states and the transition mechanisms between them. Here we use a physics-based machine learning method called state predictive information bottleneck (SPIB) to find nonlinear reaction coordinates for three systems of varying complexity.
View Article and Find Full Text PDF