Introduction: The sodium iodide symporter (NIS) directs the uptake and concentration of iodide in thyroid cells. This in turn allows radioiodine imaging and therapy for thyroid cancer. To extend the use of NIS-mediated radioiodine therapy to other types of cancer, we successfully transferred and expressed the sodium-iodide symporter (NIS) gene in prostate, colon, and breast cancer cells both in vivo and in vitro by using non-replicating adenoviral vectors.
View Article and Find Full Text PDFIn contrast to follicular cell-derived thyroid cancer, medullary thyroid cancer (MTC) remains difficult to treat because of its unresponsiveness to radioiodine therapy, or to conventional chemo- and radiotherapy. We therefore examined the feasibility of radioiodine therapy of MTC after human sodium iodide symporter (hNIS) gene transfer, using the tumor-specific carcinoembryonic antigen (CEA) promoter for transcriptional targeting. NIS gene transfer was performed in vivo in human MTC cell (TT) xenografts, using adenoviral vectors carrying the NIS gene linked to the cytomegalovirus promoter (Ad5-CMV-NIS) or a CEA promoter fragment (Ad5-CEA-NIS).
View Article and Find Full Text PDFPancreatic cancer is the fourth leading cause of cancer death in the United States. It is highly aggressive with no uniformly effective chemotherapy available for metastatic disease. The sodium-iodide symporter (NIS) is a transmembrane protein responsible for uptake of iodide into cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2005
A recombinant measles virus (MV) expressing the sodium iodide symporter (NIS) is being considered for therapy of advanced multiple myeloma. Auger electrons selectively damage cells in which the isotope decays. We hypothesized that the Auger electron emitting isotope 125I can be used to control viral proliferation.
View Article and Find Full Text PDFOvarian cancer represents the fifth leading cause of cancer death among women in the United States, with >16 000 deaths expected this year. This study was carried out to investigate the potential of sodium iodide symporter (NIS)-mediated radioiodide therapy as a novel approach for ovarian cancer treatment. Radioiodide is routinely and effectively used for the treatment of benign and malignant thyroid disease as a result of native thyroidal expression of NIS, which mediates iodide uptake.
View Article and Find Full Text PDF