Biomed Signal Process Control
August 2023
Purpose: A semi-supervised two-step methodology is proposed to obtain a volumetric estimation of COVID-19-related lesions on Computed Tomography (CT) images.
Methods: First, damaged tissue was segmented from CT images using a probabilistic active contours approach. Second, lung parenchyma was extracted using a previously trained U-Net.
IEEE Trans Neural Syst Rehabil Eng
October 2022
Electroencephalography (EEG) signals convey information related to different processes that take place in the brain. From the EEG fluctuations during sleep, it is possible to establish the sleep stages and identify short events, commonly related to a specific physiological process or pathology. Some of these short events (called A-phases) present an organization and build up the concept of the Cyclic Alternating Pattern (CAP) phenomenon.
View Article and Find Full Text PDFA two-step method for obtaining a volumetric estimation of COVID-19 related lesion from CT images is proposed. The first step consists in applying a U-NET convolutional neural network to provide a segmentation of the lung-parenchyma. This architecture is trained and validated using the Thoracic Volume and Pleural Effusion Segmentations in Diseased Lungs for Benchmarking Chest CT Processing Pipelines (PleThora) dataset, which is publicly available.
View Article and Find Full Text PDFA series of short events, called A-phases, can be observed in the human electroencephalogram (EEG) during Non-Rapid Eye Movement (NREM) sleep. These events can be classified in three groups (A1, A2, and A3) according to their spectral contents, and are thought to play a role in the transitions between the different sleep stages. A-phase detection and classification is usually performed manually by a trained expert, but it is a tedious and time-consuming task.
View Article and Find Full Text PDFIn medical imaging, the availability of robust and accurate automatic segmentation methods is very important for a user-independent and time-saving delineation of regions of interest. In this work, we present a new variational formulation for multiclass image segmentation based on active contours and probability density functions demonstrating that the method is fast, accurate, and effective for MRI brain image segmentation. We define an energy function assuming that the regions to segment are independent.
View Article and Find Full Text PDF