An updated version of the CO + CO potential energy surface from [R. Dawes, X. G.
View Article and Find Full Text PDFWater and hydrogen cyanide are two of the most common species in space and the atmosphere with the ability of binding to form dimers such as HO-HCN. In the literature, while calculations characterizing various properties of the HO-HCN cluster (equilibrium distance, vibrational frequencies and rotational constants) have been done in the past, extensive calculations of the rovibrational states of this system using a reliable quantum dynamical approach have yet to be reported. In this work, we intend to mend that by performing the first calculation of the rovibrational states of the HO-HCN van der Waals complex on a recently developed potential energy surface.
View Article and Find Full Text PDFThe remote sensing of abundance and properties of HCl-the main atmospheric reservoir of Cl atoms that directly participate in ozone depletion-is important for monitoring the partitioning of chlorine between "ozone-depleting" and "reservoir" species. Such remote studies require knowledge of the shapes of molecular resonances of HCl, which are perturbed by collisions with the molecules of the surrounding air. In this work, we report the first fully quantum calculations of collisional perturbations of the shape of a pure rotational line in H35Cl perturbed by an air-relevant molecule [as the first model system we choose the R(0) line in HCl perturbed by O2].
View Article and Find Full Text PDFThe nitrogen dioxide (NO) radical is composed of the two most abundant elements in the atmosphere, where it can be formed in a variety of ways including combustion, detonation of energetic materials, and lightning. Relevant also to smog and ozone cycles, together these processes span a wide range of temperatures. Remarkably, high-resolution NO electronic absorption spectra have only been reported in a narrow range below about 300 K.
View Article and Find Full Text PDFInterstellar anions play an important role in astrochemistry as being tracers of the physical and chemical conditions in cold molecular clouds and circumstellar gas. The local thermodynamic equilibrium is generally not fulfilled in media where anions are detected and radiative and collisional data are required to model the observed lines. The C2H- anion has not yet been detected in the interstellar medium; however, collisional data could be used for non-LTE models that would help in identifying the most intense lines.
View Article and Find Full Text PDF