Recombinant adeno-associated virus (rAAV) vectors are often produced in HEK293 or Spodoptera frugiperda (Sf)-based cell lines. We compared expression profiles of "oversized" (∼5,000 bp) and "standard-sized" (4,600 bp) rAAV5-human α1-antitrypsin (rAAV5-hA1AT) vectors manufactured in HEK293 or Sf cells and investigated molecular mechanisms mediating expression decline. C57BL/6 mice received 6 × 10 vg/kg of vector, and blood and liver samples were collected through week 57.
View Article and Find Full Text PDFMucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by N-sulfoglucosamine sulfohydrolase (SGSH) deficiency. SGSH removes the sulfate from N-sulfoglucosamine residues on the nonreducing end of heparan sulfate (HS-NRE) within lysosomes. Enzyme deficiency results in accumulation of partially degraded HS within lysosomes throughout the body, leading to a progressive severe neurological disease.
View Article and Find Full Text PDFValoctocogene roxaparvovec (AAV5-hFVIII-SQ) is an adeno-associated virus serotype 5 (AAV5)-based gene therapy vector containing a B-domain-deleted human coagulation factor VIII (hFVIII) gene controlled by a liver-selective promoter. AAV5-hFVIII-SQ is currently under clinical investigation as a treatment for severe hemophilia A. The full-length AAV5-hFVIII-SQ is >4.
View Article and Find Full Text PDFA functional bioassay has been developed for measuring the intracellular activity of recombinant human arylsulfatase B (rhASB) on its natural glycosaminoglycan (GAG) substrates, dermatan sulfate (DS), and chondroitin sulfate (CS) when the enzyme is taken up into cultured ASB-deficient human fibroblasts (GM00519). The enzyme ASB is a lysosomal exohydrolase, cleaving sulfate from the N-acetylgalactosamine-4-sulfate (GalNAc-4S) residue at the nonreducing terminal of GAG structures. ASB-deficient cells accumulate DS and CS, which may be partially hydrolyzed by other lysosomal hydrolases, with the reactions stopping if a GalNAc-4S residue is reached on the nonreducing end of the oligosaccharide.
View Article and Find Full Text PDFThe present study breaks with the earlier mechanism of electrode potential on basis of experimental investigations and theoretical considerations. It rejects that the transport through the membrane produces the electrode potential and definitely proves that the electrode potential is created via surface chemisorption; i.e.
View Article and Find Full Text PDF