ACS Appl Mater Interfaces
November 2024
Laser-active interference with high confidentiality and convenience opens up a cutting-edge path for releasing and hiding key targets; however, its development still faces enormous challenges owing to the difficulty of concealing objects. Herein, a novel conceptual design for laser-controlled information release and hiding (LIRH) is proposed and successfully realized. CsNaInCl:Er, Yb (CNIC:Er, Yb) perovskite microcrystal is adopted as a carrier for LIRH implementation, exhibiting excellent up-conversion (UC) emission under NIR (980 and 1530 nm) irradiation due to its ultralow phonon energy.
View Article and Find Full Text PDFExploration of multifunctional integrated catalysts is of great significance for photocatalysis toward practical application. Herein, a 1D confined nanoreactor with a heterogeneous core-shell structure is designed for synergies of efficient catalysis and temperature monitoring by custom encapsulation of Z-scheme heterojunction CuS quantum dots/BiVO (CuS QDs/BiVO) and YOS-Er, Yb. The dispersed active sites created by the QDs with high surface energy improve the mass transfer efficiency, and the efficient electron transport channels at the heterogeneous interface extend the carrier lifetime, which endows the nanoreactor with excellent catalytic performance.
View Article and Find Full Text PDFDeveloping efficient catalysts to degrade pollutants in water is a very important way to alleviate water pollution. However, it is crucial but challenging to broaden the functions of conventional photocatalysts and improve their environmental adaptability. In this paper, Bi(Er/Yb)OBr/polyacrylonitrile (BOB-EY/PAN) composite fibers with a swallowed-embedded structure assembled with nanopetal-rich microflowers were designed and fabricated, integrating photocatalytic and temperature-monitoring functions simultaneously.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2023
Herein, an electrospinning porous nanofiber with large specific surface area, excellent flexibility, remarkable tensile strength, and high stability of thermal degradation has been developed by loading Ho/Yb co-doped BiOBr/g-CN (BHY/CN) heterojunction photocatalysts on polyacrylonitrile (PAN) nanofibers. The optimized BHY/CN-2 nanofiber demonstrates outstanding photocatalytic activity for the degradation of 98.83% tetracycline (TC, 60 min) and 99.
View Article and Find Full Text PDFBackground: For surveillance of episodic illness, the emergency department (ED) represents one of the largest interfaces for generalizable data about segments of the US public experiencing a need for unscheduled care. This protocol manuscript describes the development and operation of a national network linking symptom, clinical, laboratory and disposition data that provides a public database dedicated to the surveillance of acute respiratory infections (ARIs) in EDs.
Methods: The Respiratory Virus Laboratory Emergency Department Network Surveillance (RESP-LENS) network includes 26 academic investigators, from 24 sites, with 91 hospitals, and the Centers for Disease Control and Prevention (CDC) to survey viral infections.