Antibiotic-resistant Enterobacterales pose a major threat to healthcare systems worldwide, necessitating the development of novel strategies to fight such hard-to-kill bacteria. One potential approach is to develop molecules that force bacteria to hyper-activate prodrug antibiotics, thus rendering them more effective. In the present work, we aimed to obtain proof-of-concept data to support that small molecules targeting transcriptional regulators can potentiate the antibiotic activity of the prodrug metronidazole (MTZ) against Escherichia coli under aerobic conditions.
View Article and Find Full Text PDFAntimicrobial resistance is a global problem, rendering conventional treatments less effective and requiring innovative strategies to combat this growing threat. The tripartite AcrAB-TolC efflux pump is the dominant constitutive system by which Enterobacterales like Escherichia coli and Klebsiella pneumoniae extrude antibiotics. Here, we describe the medicinal chemistry development and drug-like properties of BDM91288, a pyridylpiperazine-based AcrB efflux pump inhibitor.
View Article and Find Full Text PDFObjectives: In , multidrug efflux pumps belonging to the resistance-nodulation-division (RND) superfamily result in decreased antibiotic susceptibility. Improving the activity of current antibiotics via efflux pump inhibitors (EPIs) represents an attractive alternative approach to control this bacterium. Pyridylpiperazines (PyrPips) are a new class of EPIs that can effectively inhibit the RND efflux pump AcrAB-TolC and boost the activity of several antibiotics.
View Article and Find Full Text PDFMultidrug-resistant Escherichia coli is a continuously growing worldwide public health problem, in which the well-known AcrAB-TolC tripartite RND efflux pump is a critical driver. We have previously described pyridylpiperazines as a novel class of allosteric inhibitors of E. coli AcrB which bind to a unique site in the protein transmembrane domain, allowing for the potentiation of antibiotic activity.
View Article and Find Full Text PDFThe engineering of skeletal muscle tissue, a highly organized structure of myotubes, is promising for the treatment of muscle injuries and muscle diseases, for replacement, or for pharmacology research. Muscle tissue development involves differentiation of myoblasts into myotubes with parallel orientation, to ultimately form aligned myofibers, which is challenging to achieve on flat surfaces. In this work, we designed hydrogen-bonded tannic acid/collagen layer-by-layer (TA/COL LbL) nanofilms using a simple brushing method to address this issue.
View Article and Find Full Text PDF