Substitution of lost neurons by neurotransplantation would be a possible management of advanced degenerative cerebellar ataxias in which insufficient cerebellar reserve remains. In this study, we examined the volume and structure of solid embryonic cerebellar grafts in adult Lurcher mice, a model of olivocerebellar degeneration, and their healthy littermates. Grafts taken from enhanced green fluorescent protein (EGFP)-positive embryos were injected into the cerebellum of host mice.
View Article and Find Full Text PDFDuring embryonic development, heterozygous mutant kreisler mice undergo ectopic expression of the Hoxa3 gene in the rostral hindbrain, affecting the opioid and noradrenergic systems. In this model, we have investigated behavioral and cognitive processes in their adulthood. We confirmed that pontine and locus coeruleus neuronal projections are impaired, by using startle and pain tests and by analyzing immunohistochemical localization of tyrosine hydroxylase.
View Article and Find Full Text PDFPurpose: Numerous articles have recently studied the involvement of the gut microbiota in neurological diseases. Aging is associated with changes in the microbiome, which implies a reduction in microbial biodiversity among other changes. Considering that the consumption of a fermented-food diet improves intestinal permeability and barrier function, it seems of interest to study its participation in the prevention of neurodegenerative diseases.
View Article and Find Full Text PDFThe ubiquitin-proteasome system (UPS) plays a fundamental role in protein degradation in neurons, and there is strong evidence that it fulfills a key role in synaptic transmission. The aim of the present work was to study the implication of one component of the UPS, the HERC1 E3 Ubiquitin Ligase, in motor function and neuromuscular transmission. The tambaleante (tbl) mutant mouse carries a spontaneous mutation in HERC1 E3 Ubiquitin Ligase, provoking an ataxic phenotype that develops in the second month of life.
View Article and Find Full Text PDFYoung adult heterozygous Lurcher mice constitute an excellent model for studying the role of the cerebellar cortex in motor performance-including the acquisition of new motor abilities-because of the early postnatal degeneration of almost all of their Purkinje and granular cells. Wild-type and Lurcher mice were classically conditioned for eyelid responses using a delay paradigm with or without an electrolytic lesion in the interpositus nucleus. Although the late component of electrically evoked blink reflexes was smaller in amplitude and had a longer latency in Lurcher mice than that in controls, the two groups of animals presented similar acquisition curves for eyeblink conditioning.
View Article and Find Full Text PDF