Publications by authors named "E Poreba"

Neuroglia critically shape the brain´s response to ischemic stroke. However, their phenotypic heterogeneity impedes a holistic understanding of the cellular composition of the early ischemic lesion. Here we present a single cell resolution transcriptomics dataset of the brain´s acute response to infarction.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how reactive neuroglia, specifically oligodendrocytes and astrocytes, respond to ischemic stroke, revealing their diverse roles in the early recovery phase after a stroke due to permanent middle cerebral artery occlusion.
  • - Using single-cell transcriptomics, researchers identified unique molecular signatures in different cell types affected by infarction and noted significant transcriptional changes in oligodendrocyte precursor cells (OPCs) and reactive astrocytes.
  • - The findings showed that OPCs and reactive astrocytes interact with stroke-specific myeloid cells, particularly osteopontin-positive cells, and that osteopontin enhances the movement of OPCs, indicating key molecular interactions that shape the recovery environment in the brain
View Article and Find Full Text PDF

Peripheral contact to pathogen-associated molecular patterns (PAMPs) evokes a systemic innate immune response which is rapidly relayed to the central nervous system (CNS). The remarkable cellular heterogeneity of the CNS poses a significant challenge to the study of cell type and stimulus dependent responses of neural cells during acute inflammation. Here we utilized single nuclei RNA sequencing (snRNAseq), serum proteome profiling and primary cell culture methods to systematically compare the acute response of the mammalian brain to the bacterial PAMP lipopolysaccharide (LPS) and the viral PAMP polyinosinic:polycytidylic acid (Poly(I:C)), at single cell resolution.

View Article and Find Full Text PDF

Background: S1-like nucleases are widespread enzymes commonly used in biotechnology and molecular biology. Although it is commonly believed that they are mainly Zn-dependent acidic enzymes, we have found that numerous members of this family deviate from this rule. Therefore, in this work, we decided to check how broad is the range of non‑zinc-dependent S1-like nucleases and what is the molecular basis of their activities.

View Article and Find Full Text PDF

Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers.

View Article and Find Full Text PDF