Publications by authors named "E Poradosu"

NXP900 is a selective and potent SRC family kinase (SFK) inhibitor, currently being dosed in a phase 1 clinical trial, that locks SRC in the "closed" conformation, thereby inhibiting both kinase-dependent catalytic activity and kinase-independent functions. In contrast, several multi-targeted kinase inhibitors that inhibit SRC, including dasatinib and bosutinib, bind their target in the active "open" conformation, allowing SRC and other SFKs to act as a scaffold to promote tumorigenesis through non-catalytic functions. NXP900 exhibits a unique target selectivity profile with sub-nanomolar activity against SFK members over other kinases.

View Article and Find Full Text PDF

The combination of lenalidomide-dexamethasone is active in multiple myeloma (MM). Preclinical data showed that the Akt inhibitor, perifosine, sensitized MM cells to lenalidomide and dexamethasone, providing the rationale for this Phase I, multicentre, single-arm study to assess the safety and determine the maximum-tolerated dose (MTD) of perifosine-lenalidomide-dexamethasone in relapsed and relapsed/refractory MM. Patients received escalating doses of perifosine 50-100 mg daily and lenalidomide 15-25 mg once daily on days 1-21 of each 28-d cycle, plus dexamethasone 20-40 mg weekly thereafter, as indicated.

View Article and Find Full Text PDF

Purpose: Novel agents have improved patient outcome in relapsed or relapsed/refractory multiple myeloma (MM). Preclinical data show that the novel signal transduction modulator, perifosine, enhances the cytotoxicity of dexamethasone and bortezomib. Clinical data suggest that perifosine in combination with dexamethasone has activity in relapsed or relapsed/refractory MM.

View Article and Find Full Text PDF

Perifosine belongs to the class of alkylphospholipid analogues, which act primarily at the cell membrane, thereby targeting signal transduction pathways. In phase I/II clinical trials, perifosine has induced tumour regression and caused disease stabilisation in a variety of tumour types. The genetic determinants responsible for its cytotoxicity have not been comprehensively studied, however.

View Article and Find Full Text PDF

Purpose: It is critical to develop methods to quantify the early pharmacodynamic effects of targeted therapeutics in vivo to make drug development more efficient and ensure biologically relevant dosing. Furthermore, an ability to identify patients likely to respond to targeted therapeutics would decrease the size, duration, and cost of clinical trials, resulting in more efficient translation to improved patient outcomes. Recent studies suggest that perifosine inhibits the phosphatidylinositol-3'-kinase (PI3K) pathway by preventing cell membrane recruitment of the AKT pleckstrin homology domain.

View Article and Find Full Text PDF