Retinal diseases are characterized by progressive damage to retinal cells, leading to irreversible vision loss. Among these, glaucoma stands out as a multifactorial neurodegenerative disease involving elevated intraocular pressure, retinal ganglion cell apoptosis, and optic nerve damage, ultimately resulting in blindness in both humans and dogs. Stem cell-based therapies have emerged as a promising therapeutic option for such conditions due to their regenerative and neuroprotective potential.
View Article and Find Full Text PDFMichael Somogyi (Somogyi Mihály, 1883-1971) was a Hungarian biochemist who developed his scientific career in Europe and, primarily, the United States. He gave the name to the eponymous Somogyi effect or Somogyi hypothesis (in short, rebound hyperglycemia after insulin-induced hypoglycemia, particularly nocturnal), which was an axiom in the treatment of diabetes for decades. Although it is currently debated whether the Somogyi hypothesis is a real or relevant phenomenon in patients with diabetes, Somogyi's other significant career achievements are often overlooked.
View Article and Find Full Text PDFFirst-line immune checkpoint inhibitor (ICI) combinations show responses in subsets of hepatocellular carcinoma (HCC) patients. Nearly half of HCCs are Wnt-active with mutations in (encoding for β-catenin), , or , and demonstrate limited benefit to ICI due to an immune excluded tumor microenvironment. We show significant tumor responses in multiple β-catenin-mutated immunocompetent HCC models to a novel siRNA encapsulated in lipid nanoparticle targeting (LNP-CTNNB1).
View Article and Find Full Text PDFBackground & Aims: Patients with β-catenin (encoded by )-mutated hepatocellular carcinoma (HCC) demonstrate heterogenous responses to first-line immune checkpoint inhibitors (ICIs). Precision-medicine based treatments for this subclass are currently in clinical development. Here, we report derivation of the Mutated β-catenin Gene Signature (MBGS) to predict -mutational status in patients with HCC for future application in personalized medicine treatment regimens.
View Article and Find Full Text PDFBackground: This study aims to investigate the differential miRNA expression profile between the visceral white adipose tissue and the skeletal muscle of people with obesity undergoing bariatric surgery.
Methods: Skeletal muscle and visceral adipose tissue samples of 10 controls and 38 people with obesity (50% also with type 2 diabetes) undergoing bariatric surgery were collected. miRNA expression profiles were analyzed using Next-Generation Sequencing and subsequently validated using RT-PCR.