The obligate anaerobe encodes multiple reductases to detoxify molecular oxygen and reactive oxygen species. Caulat and colleagues have characterized the activity and regulation of four such reductases (L. C.
View Article and Find Full Text PDFNeurochemical sensing with implantable devices has gained remarkable attention over the last few decades. A promising area of this research is the progress of novel electrodes as electrochemical tools for neurotransmitter detection in the brain. The boron-doped diamond (BDD) electrode is one such candidate that previously has been reported for its excellent electrochemical properties, including a wide working potential, superior chemical inertness and mechanical stability, good biocompatibility and resistance to fouling.
View Article and Find Full Text PDFFast-scan cyclic voltammetry (FSCV) is an electrochemical sensing technique that can be used for neurochemical sensing with high spatiotemporal resolution. Carbon fiber microelectrodes (CFMEs) are traditionally used as FSCV sensors. However, CFMEs are prone to electrochemical fouling caused by oxidative byproducts of repeated serotonin (5-HT) exposure, which makes them less suitable as chronic 5-HT sensors.
View Article and Find Full Text PDFThe bacterial stringent response (SR) is a conserved transcriptional reprogramming pathway mediated by the nucleotide signalling alarmones, (pp)pGpp. The SR has been implicated in antibiotic survival in , a biofilm- and spore-forming pathogen that causes resilient, highly recurrent infections. The role of the SR in other processes and the effectors by which it regulates physiology are unknown.
View Article and Find Full Text PDFStudy of the foreign body reaction to implanted electrodes in the brain is an important area of research for the future development of neuroprostheses and experimental electrophysiology. After electrode implantation in the brain, microglial activation, reactive astrogliosis, and neuronal cell death create an environment immediately surrounding the electrode that is significantly altered from its homeostatic state.To uncover physiological changes potentially affecting device function and longevity, spatial transcriptomics (ST) was implemented to identify changes in gene expression driven by electrode implantation and compare this differential gene expression to traditional metrics of glial reactivity, neuronal loss, and electrophysiological recording quality.
View Article and Find Full Text PDF