Besides its matrix metalloproteinases inhibitory activity, TIMP-1 exhibits other biological activities such as cell survival and proliferation. The intracellular signalling pathway elicited by TIMP-1 begins to be elucidated. We have shown previously that the caspase-3 and the p38alpha MAP kinase were activated during TIMP-1-induced UT-7 cells erythroid differentiation.
View Article and Find Full Text PDFThe programmed cell death plays a crucial role in the regulation of numerous physiological and pathological phenomena. In this study, we show that interleukin-1 beta (IL-1beta) induces an early production of endogenous ceramides via N-sphingomyelinase (N-Smase) as well as an inhibition of adenylyl cyclase activity in pig thyroid cells. This effect is followed by a down-regulation of the extracellular signal-regulated protein kinase (ERK1/2) phosphorylation, an activation of caspase-3, and ends by setting up the programmed cell death.
View Article and Find Full Text PDFTissue inhibitor of metalloproteinase-1 (TIMP-1) is one representative of the natural matrix metalloproteinase (MMP) inhibitor family, encompassing four members. It inhibits all MMPs, except several MT-MMPs, and a disintegrin with a metalloproteinase domain (ADAM)-10 with Kis < nM. Unexpectedly, its upregulation was associated to poor clinical outcome for several cancer varieties.
View Article and Find Full Text PDFTissue inhibitors of metalloproteinases (TIMPs) are natural inhibitors of matrix metalloproteinases (MMPs) found in most tissues and body fluids. By inhibiting MMPs activities, they participate in tissue remodeling of the extracellular matrix (ECM). The balance between MMPs and TIMPs activities is involved in both normal and pathological events such as wound healing, tissue remodeling, angiogenesis, invasion, tumorigenesis and metastasis.
View Article and Find Full Text PDFTissue inhibitors of metalloproteinases (TIMP) are specific inhibitors of matrix metalloproteinases (MMPs) and thus participate in maintaining the balance between extracellular matrix deposition and degradation in several physio-pathological processes. Nevertheless, TIMP must be regarded as multifunctional proteins involved in cell growth, angiogenesis and apoptosis. The molecular mechanisms induced by TIMP remain largely unknown.
View Article and Find Full Text PDF