Publications by authors named "E Pedrazzini"

The endoplasmic reticulum takes care of the folding, assembly, and quality control of thousands of proteins destined to the different compartments of the endomembrane system or to be secreted in the apoplast. Here we describe how these early events in the life of all these proteins can be followed biochemically by using velocity or isopycnic ultracentrifugation, metabolic labelling with radioactive amino acids, drug treatments, and immunoselection in various conditions and, in certain cases, predicted in silico by algorithms.

View Article and Find Full Text PDF

The ability of plants to assemble particulate structures such as virus-like particles and protein storage organelles allows the direct bioencapsulation of recombinant proteins during the manufacturing process, which holds promise for the development of new drug delivery vehicles. Storage organelles found in plants such as protein bodies (PBs) have been successfully used as tools for accumulation and encapsulation of recombinant proteins. The fusion of sequences derived from 27-kDa-γ-zein, a major storage protein of maize, with a protein of interest leads to the incorporation of the chimeric protein into the stable and protected environment inside newly induced PBs.

View Article and Find Full Text PDF

Seeds are an attractive platform for the production of recombinant proteins because of their excellent storage properties and their well-developed endomembrane system, which allows accumulation of the product within specialized storage organelles. Due to the presence of these additional organelles and the resulting complexity of intracellular protein trafficking it is interesting to investigate the transport and storage of a recombinant protein within seed tissues, its interactions with endogenous reserve proteins and its impact on the ultrastructure of the endomembrane system. Possible approaches include sequential extraction procedures, subcellular fractionation and 2D as well as 3D electron microscopy techniques such as electron tomography (ET) and serial block face scanning electron microscopy (SBF-SEM), which are described and discussed in this chapter.

View Article and Find Full Text PDF

During seed development, the endoplasmic reticulum (ER) takes care of the synthesis and structural maturation of very high amounts of storage proteins in a relatively short time. The ER must thus adjust its extension and machinery to optimize this process. The major signaling mechanism to maintain ER homeostasis is the unfolded protein response (UPR).

View Article and Find Full Text PDF

A distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets.

View Article and Find Full Text PDF