This study optimized the anaerobic digestion (AD) of separated collected organic fractions of municipal solid waste (OFMSW) to produce energy and digestate as biofertilizer. Due to OFMSW's partial recalcitrance to degradation, enzymatic (UPP2, MCPS, USC4, USE2, A. niger) and physical (mechanical blending, heating, hydrodynamic cavitation) pre-treatments were tested.
View Article and Find Full Text PDFMunicipal waste biomass could be valorized as an alternative feedstock to produce compounds beneficial for agricultural applications. The foliar spray application of biostimulants emerges as a promising and innovative technique due to its environmental safety and ability to enhance crop yields. In recent years, the exploitation of biopolymers obtained through alkaline hydrolysis of the solid anaerobic digestate from municipal biowastes has attracted researchers' interest.
View Article and Find Full Text PDFBiosurfactants account for about 12% of the global value of the surfactant market, which is currently dominated by synthetic surfactants obtained from fossil sources. Yet, the production of biosurfactants from renewable feedstock is bound to increase, driven by the increasing pressure from both society and governments for chemistry-based industries to become more ecofriendly and economically sustainable. A photo-chemical oxidation process is reported here, yielding new biosurfactants from urban biowaste in water that perform as a solvent and terminal oxidant reagent at room temperature without the addition of conventional oxidants and catalysts.
View Article and Find Full Text PDFThe paper discusses the perspectives of further implementation of the autocatalytic properties of a soluble biopolymer (SBP) derived from municipal biowastes for the realisation of a biorefinery producing value-added bio-products for consumer use. The reaction of an SBP and water is reported to cause the depolymerisation and oxidation of the pristine SBP organic matter with the formation of carboxyl-functionalised polymers having lower molecular weight and CO. These findings demonstrate the oxidation of the SBP via water, which could only occur through the production of O and OH radicals catalysed by the SBP.
View Article and Find Full Text PDFIn urban environments, soils are a sink of pollutants and might become a source of contamination, as they commonly display potentially toxic elements (PTE) concentrations above the legislative limits. Particularly, the inhalable fraction of soils (<10 μm) is enriched in PTE compared to bulk soils (BS). The enrichment makes these particles an environmental hazard because of their susceptibility to resuspension and their potential contribution to road dust (RD) and atmospheric particulate matter (PM) pollution.
View Article and Find Full Text PDF