Publications by authors named "E PINTER"

Hydrogen sulfide (HS) is a gasotransmitter that modulates vascular tone, causing either vasodilation or vasoconstriction depending on the vascular bed, species, and experimental conditions. The cold-sensitive transient receptor potential ankyrin-1 (TRPA1) channel mediates HS-induced effects; however, its contribution to the vasomotor responses of different arteries at different temperatures has remained unclear. Here, we aimed to fill this gap by comparing the effects of sodium sulfide (NaS), which is a fast-releasing HS donor, on the isolated carotid and tail skin arteries of rats and mice at cold and normal body temperature with wire myography.

View Article and Find Full Text PDF

Introduction: The integration of AI into healthcare is widely anticipated to revolutionize medical diagnostics, enabling earlier, more accurate disease detection and personalized care.

Methods: In this study, we developed and validated an AI-assisted diagnostic support tool using only routinely ordered and broadly available blood tests to predict the presence of major chronic and acute diseases as well as rare disorders.

Results: Our model was tested on both retrospective and prospective datasets comprising over one million patients.

View Article and Find Full Text PDF

Chronic orofacial pain disorders are common debilitating conditions, affecting the trigeminal system. Its underlying pathophysiological mechanisms are still unclear and the therapy is often unsatisfactory, therefore, preclinical models are crucial to identify the key mediators and novel treatment options. Complete Freund's adjuvant (CFA)-induced orofacial inflammatory allodynia/hyperalgesia is commonly used in rodents, but it has not been validated with currently used drugs.

View Article and Find Full Text PDF

: Stimulated capsaicin-sensitive peptidergic sensory nerves release somatostatin (SST), which has systemic anti-inflammatory and analgesic effects, correlating with the severity of tissue injury. Previous studies suggest that SST release into the systemic circulation is likely to serve as a protective mechanism during thoracic and orthopedic surgeries, scoliosis operations, and septic conditions, all involving significant tissue damage, pain, and inflammation. In a severe systemic inflammation rat model, SST released from sensory nerves into the bloodstream enhanced innate defense, reducing mortality.

View Article and Find Full Text PDF