Background: Accumulated knowledge on the outcomes related to size mismatch in lung transplantation derives from predicted total lung capacity equations rather than individualized measurements of donors and recipients. The increasing availability of computed tomography (CT) makes it possible to measure the lung volumes of donors and recipients before transplantation. We hypothesize that CT-derived lung volumes predict a need for surgical graft reduction and primary graft dysfunction.
View Article and Find Full Text PDFBackground: Errors in measuring chest X-ray (CXR) lung heights could contribute to the occurrence of size-mismatched lung transplant procedures.
Methods: We first used Bland-Altman analysis for repeated measures to evaluate contributors to measurement error of chest X-ray lung height. We then applied error propagation theory to assess the impact of measurement error on size matching for lung transplantation.
Background: Mechanical ventilation immediately after lung transplantation may impact the development of primary graft dysfunction (PGD), particularly in cases of donor-recipient size mismatch as ventilation is typically based on recipient rather than donor size.
Methods: We conducted a retrospective cohort study of adult bilateral lung transplant recipients at our center between January 2010 and January 2017. We defined donor-based lung protective ventilation (dLPV) as 6 to 8 ml/kg of donor ideal body weight and plateau pressure <30 cm HO.
Background: Over the last decade two alternative models of donor care have emerged in the United States: the conventional model, whereby donors are managed at the hospital where brain death occurs, and the specialized donor care facility (SDCF), in which brain dead donors are transferred to a SDCF for medical optimization and organ procurement. Despite increasing use of the SDCF model, its cost-effectiveness in comparison to the conventional model remains unknown.
Methods: We performed an economic evaluation of the SDCF and conventional model of donor care from the perspective of U.
Factors contributing to donor-specific HLA antibody (DSA) development after lung transplantation have not been systematically evaluated. We hypothesized that the isolation of Pseudomonas aeruginosa in respiratory specimens would increase the risk of DSA development. Our objective was to determine the risk of DSA development associated with the isolation of Pseudomonas aeruginosa after lung transplantation.
View Article and Find Full Text PDF